Tech in Different Pathways

Agenda

VE RI TAS MARVARD

- Augmented Reality (AR)/Virtual Reality (VR)
- 2. Health Informatics
- 3. Software Engineering
- 4. Data Science
- 5. Data Engineering
- 6. Inclusive & Participatory Design
- 7. Case studies: using tech for social good

- 1. What?
- 2. Why?
- 3. Career Paths

Who are we?

Rachel Gong Harvard Graduate School of Arts and Science, **Computational Science** & Engineering

Dawn Chen PhD Student in Systems Biology ex-Software Engineer@Google

Yiran Bowman Harvard Graduate School of Education Technology, Innovation, and Education

Selina Wu Harvard Graduate School of Arts and Science, **Data Science**

Augmented Reality (AR), Virtual Reality(VR), and the Future

By Yiran Bowman

yiran_bowman@gse.harvard.edu

Video clip

https://www.youtube.com/watch?v=nPcb05I0anY

00:42 - 1:44

What is...AR/VR?

What can AR/VR do

AR - GPS on windshield

AR - Medical training

AR/VR - Meeting/Collaboration

AR - Learning/Project/Debugging

AR - Learning/Project/Debugging

AR - Learning/Project/Debugging

Why AR/VR can do these?

Transfer/Present Information

- Benefits: Acquiring information more effectively
- Text Drawing Painting Picture Video AR/VR

Virtual Presence

- People want to be here and be there.
- Realtime Audio (phone call) Realtime Video + Audio (Video call) VR/AR
- Benefits: Collaborating and communicating more effectively

What it takes to produce AR/VR applications?

How can I be part of this cool tech?

- Programmer Computer Science
- Graphic Designer Graphic Design
- User Researcher Psychology
- Product Manager Information System/Computer Science/Business etc
- Hardware Mechanical Engineering etc

Or

Any Major!

Create your own AR/VR

No coding AR

https://sparkar.facebook.com/ar-studio/

https://www.adobe.com/products/aero.html

Development Platform https://unity3d.com/

Health Informatics

By Ning Hua

About me

>> Yining Hua
Harvard Medical School
Massachusetts General Hospital

Topics

- a. Biostatistics
- b. Bioinformatics
- c. Biomedical informatics
- d. Computational pathology
- e. Computational Medicine

• • •

Health informatics

What is health informatics?

Health informatics

"... the integration of healthcare sciences, computer science, information science, and cognitive science to assist in the management of healthcare information".

- Saba & McCormick, 2015, p. 232

Health informatics

molecules biological systems cells tissues healthcare organs systems individuals social populations systems

Biostatistics

"Data don't make any sense, we will have to resort to statistics."

Bioinformatics

Biomedical informatics

Computational pathology

Software Engineering

By Rachel

Front-End vs. Back-End Development: Which Side of the Screen Are You?

Data Structures

Algorithms

Software Development Lifecycle

Data Science

By Selina Wu

What is data science?

Why data science?

Influence: help companies make quicker and better decisions

Demand & Job: grown over 650% since 2012 (LinkedIn's Emerging Jobs report) creating 11.5M jobs by 2026 (U.S. Bureau of Labor Statistics)

Fun: The only limitation is your imagination!

The data science process

Career Path

Data Engineering

By Rachel

The six Vs of big data

How this can be achieved?

Career Paths

Data Engineer

Inclusive & Participatory Design in Machine Learning (ML)

By Rachel

EXAMPLES OF DATA SCIENCE FAILS:

PREDICTIVE POLICING

PREDICTIVE POLICING ALGORITHMS ARE RACIST.
THEY NEED TO BE DISMANTLED, MIT TECHNOLOGY
REVIEW 2020

FACIAL RECOGNITION SYSTEMS

FACIAL RECOGNITION IS ACCURATE, IF YOU'RE A WHITE GUY, NEW YORK TIMES, 2018

PRE-TRIAL, PAROLE RISK ASSESMENT

INJUSTICE EX-MACHINA: PREDICTIVE ALGORITHM IN CRIMINAL JUSTICE, UCLA LAW REVIEW, 2019

PRECISION HEALTH CARE

SEX AND GENDER DIFFERENCES AND BIASES IN ARTIFICIAL INTELLIGENCE FOR BID MEDICINE AND HEALTH CARE, NATURE, 2020

WHY IS THIS HAPPENING?

BIAS IN TECH IS NOT AN ALGORITHMIC, MATH PROBLEM, IT IS A PEOPLE PROBLEM, IT IS ABOUT NEGLECTING THE HUMAN DIMENSION AND INEXTRICABLY LINKED WITH DIVERSITY & REPRESENTATION.

- LACK OF SEX
 AGGREGATED
 DATA IN ECON,
 URBAN PLANNING,
 MEDICINE,
 AGRICULTURE,
 ETC.
- · LACK OF DIVERSITY IN ML TRAINING DATA

NEGLECTING SOCIAL, POLITICAL CUTURAL FACTORS

- NO TECH STANDS
 ALONE WITHOUT
 SOCIAL, CULTURAL
 POLITICAL, ECON
 HISTORICAL
 CONTEXT
- NO PROBLEM IS SOLVABLE BY TECH ALONE

PERSPECTIVE GAP

- DESIGN CHOICES ARE
 NOT NEUTRAL NOR
 OBJECTIVE BUT ENCODE
 VALUES AND PERSPECTIVES.
- · PRIORITIZE TECHNICAL PARAMETERS OVER USER NEEDS
- · (OMMUNITIES THAT ARE IMPACTED BY TECH ARE NOT REPRESENTED AS DESIGNERS, POLICY MAKERS, ENGINEERS

RACE AFTER TECHNOLOGY, RUHA BENJAMINE INVISIBLE WOMEN, CAROLINE CRIADO PEREZ

PARTICIPATORY FRAMEWORKS FOR MACHINE LEARNING

- · PARTICIPATORY DESIGN IS DESIGN THAT ACTIVELY INCORPORATE FEED BACK FROM STAKE-HOLDERS
- . CO-DESIGN IS A COLLABORATIVE DESIGN PROCESS BTW DESIGNERS & STAKE-HOLDERS
- · PARTICIPATORY ACTION RESEARCH IS COMMUNITY EMBEDDED RESEARCH THAT PARTNER WITH AFFECTED COMMUNITIES TO ACHIEVE SOCIAL CHANGE

"Don't let the perfect be the enemy of the good."

ASCE CODE OF ETHICS

•

1. SOCIETY

Engineers:

- a. first and foremost, protect the health, safety, and welfare of the public;
- b. enhance the quality of life for humanity;
- c. express professional opinions truthfully and only when founded on adequate knowledge and honest conviction;
- d. have zero tolerance for bribery, fraud, and corruption in all forms, and report violations to the proper authorities;
- e. endeavor to be of service in civic affairs;
- f. treat all persons with respect, dignity, and fairness, and reject all forms of discrimination and harassment:
- g. recognize the diverse historical, social, and cultural needs of the community, and incorporate these considerations in their work;
- h. consider the capabilities, limitations, and implications of current and emerging technologies when part of their work; and

- Chelsea Barabas, "Beyond Bias: Re-imagining the Terms of "Ethical AI" in Criminal Law"

Case studies: using tech for social good

Dawn Chen

Resources to find emerging ideas

- <u>ProductHunt</u>: "Kickstarter" for new apps and products
- <u>EdSurge</u>: Reports on new startups in education
- <u>EndpointsNews</u>: News in BioPharma
- <u>Google AI for Social Good</u>: List of social impact ideas. <u>Here</u> is their report.

Google Live Transcribe

 Use AI to convert speech to text in real-time

Khushi Baby

The problem: How to store digital health records for babies in rural India?

Parents can't remember what vaccines their children have already received

Solution: Store the records in a necklace/bracelet that the babies will wear.

Health workers can read the records using NFC technology, don't need

internet

Vote America

- Makes voting easier by helping people register or request for absentee ballots
- Collecting and aggregating data for all states is HARD

TraceTogether

- Contact tracing for COVID19 in Singapore
- Tracks the people you've been in close contact with using phone bluetooth
 - Changed to a physical token due to low app download rate

Thank you. Q&A

- 1. Augmented Reality (AR)/Virtual Reality (VR)
- 2. Health Informatics
- 3. Software Engineering
- 4. Data Science
- 5. Data Engineering
- 6. Inclusive & Participatory Design
- 7. Case studies: using tech for social good

Rachel Gong, wenlin_gong@g.harvard.edu, Yining Hua, yining_hua@hms.harvard.edu
Yiran Bowman, yiran_bowman@gse.harvard.edu,
Dawn Chen, dawnchen@fas.harvard.edu
Selina Wu, zwu2@g.harvard.edu